Результаты научно-технических разработок ДТОО «Институт космической техники и технологий» по созданию экспериментальных образцов комплектующих к космическим аппаратам и аппаратно-программных средств конечных пользователей космических продуктов и услуг

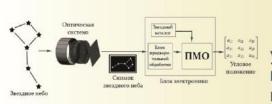
г. Алматы 2016 год

О СТРУКТУРЕ МИРОВОГО КОСМИЧЕСКОГО РЫНКА

По структуре мировой космический рынок делится на четыре крупных сегмента.

Первый – это создание аппаратно-программных средств (АПС), предназначенных для доведения космических продуктов и услуг до конечных пользователей. Это наиболее массовый рынок, который составляет 56 % мирового космического рынка.

Второй — это создание наземного оборудования космических систем, которое позволяет создать информационные системы с использованием космических аппаратов (КА), находящихся на орбите. Этот сегмент составляет примерно 32 % мирового космического рынка.


Третий — это создание непосредственно самих КА различного назначения. Объем этого сегмента составляет 9% мирового космического рынка.

Четвертый — это обеспечение запусков КА в космос. Это рынок, который составляет 3 % мирового космического рынка.

Таким образом, создание АПС конечных пользователей, предназначенных для доведения до них космических продуктов и услуг, и создание наземного оборудования космических систем занимает 88% мирового космического рынка.

В особенности, разнообразие АПС конечных пользователей настолько велико, что дает практически неограниченные возможности для вхождения Казахстана в этот сегмент рынка.

ЗВЕЗДНЫЙ ДАТЧИК ДЛЯ ОРИЕНТАЦИИ КА В КОСМИЧЕСКОМ ПРОСТРАНСТВЕ

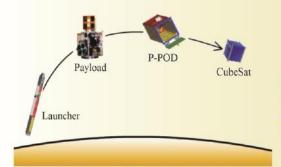
Звездный датчик является высокотехнологичным устройством для точного определения углового положения (ориентации) космического аппарата в инерциальной системе координат.

Основные технические характеристики:

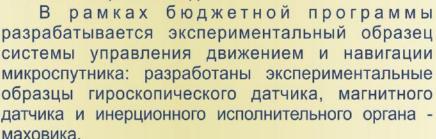
- -поле зрения: 20°;
- точность определения ориентации: 15 угл. сек.;
- частота обновления: 2 Гц;
- угол между оптической осью и Солнцем: 40°;
- потребляемая мощность: <10Вт.

Область использования:

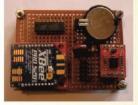
Звездные датчики используются в космических аппаратах различного назначения, к которым предъявляются требования по высокоточной ориентации, например, космические аппараты дистанционного зондирования Земли.


В настоящее время разработан экспериментальный образец звездного датчика для космических аппаратов: разработаны экспериментальный образец оптической системы и программно-математическое обеспечение звездного датчика.

Для отработки основных алгоритмов программно-математического обеспечения звездного датчика разработан макет, который внедрен в учебный процесс АУЭиС в качестве лабораторного стенда для студентов космических специальностей.



СИСТЕМА УПРАВЛЕНИЯ ДВИЖЕНИЕМ И НАВИГАЦИИ КА



Система управления движением и навигации является одной из важнейших служебных подсистем КА. Система предназначена для определения и управления угловым положением для обеспечения выполнения целевых задач КА.

Для отработки основных алгоритмов программно-математического обеспечения системы управления движением и навигации разработан макет, который внедрен в учебный процесс АУЭиС в качестве лабораторного стенда для студентов космических специальностей.

Область использования:

Системы управления движением и навигации являются неотъемлемой частью космических аппаратов различного назначения и могут иметь различный состав датчиков ориентации и исполнительных органов в зависимости от предъявляемых требований к ориентации КА.

GPS-МОДУЛЬ ДЛЯ ОПРЕДЕЛЕНИЯ ПОЛОЖЕНИЯ КА

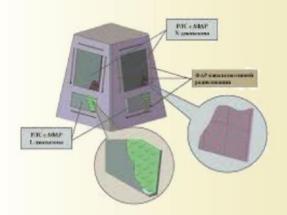
Функциональное назначение:

Предназначен для определения координат КА в пространстве. GPS-модуль решает весьма важную задачу определения положения центра масс КА, для решения которой вплоть до сегодняшнего дня используется достаточно разветвленная и дорогостоящая наземная инфраструктура в виде контрольно-измерительных комплексов (КИК).

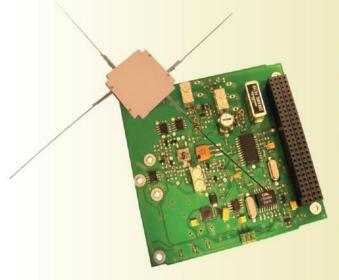
Использование GPS-модуля заметно снижает стоимость не только КА, но и космической системы в целом за счет отказа от строительства дорогостоящих КИК. В данном случае не имеется конкурентного преимущества с точки зрения научной новизны продукции, но освоение GPS-технологий дает прямой экономический, косвенный и мультипликативный эффекты.

АКТИВНЫЕ ФАЗИРОВАННЫЕ АНТЕННЫЕ РЕШЕТКИ ДЛЯ СИСТЕМ РАДИОСВЯЗИ С КА

Функциональное назначение:


Активные фазированные решетки предназначены для формирования требуемой диаграммы направленности антенны, управления в определенных пределах формой и направлением излучаемых ею сигналов.

Основные достоинства:

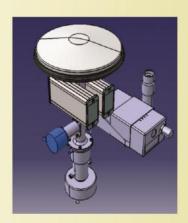

- отсутствие механических систем изменения направления излучаемого сигнала;
- высокая надежность в силу множества независимых приемников и передатчиков;
 - одновременная работа в разных частотных диапазонах;
 - высокая чувствительность.

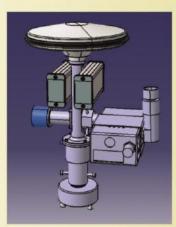
Область использования:

Активные фазированные решетки применяются в различных радарных системах, а также системах связи, требующих динамичное управление апертурой антенной системы, например, в комплексах ПВО, радиолокаторах, самолетах военного назначения, кораблях и космических аппаратах.

ПРИЕМО-ПЕРЕДАЮЩИЕ УСТРОЙСТВА СВЯЗИ КА И НАЗЕМНАЯ СТАНЦИЯ ПРИЕМА

Функциональное назначение:


Приемо-передающие устройства связи КА предназначены для организации радиосвязи в двухстороннем режиме с целью обеспечения выполнения различных команд, а также получения научной и другой информации с полезной нагрузки КА наземной станцией приема. Наземная станция приема позволяет осуществлять управление КА, получать телеметрическую и целевую информацию, а также производить обработку и анализ полученных данных.


Система двухсторонней связи с КА включает в себя оборудование наземной инфраструктуры (НКУ, НЦК) и оборудование КА. Связь с КА, включая функции контроля, управления и съема целевой информации, осуществляется для спутников различного назначения (геостационарный спутник связи, спутник ДЗЗ, низкоорбитальный спутник связи, спутники научного и технологического назначений) на различных диапазонах частот.

ЛОКАЛЬНАЯ СИСТЕМА ДИФФЕРЕНЦИАЛЬНОЙ КОРРЕКЦИИ И ЛАЗЕРНОЙ ДАЛЬНОМЕТРИИ

Применение:

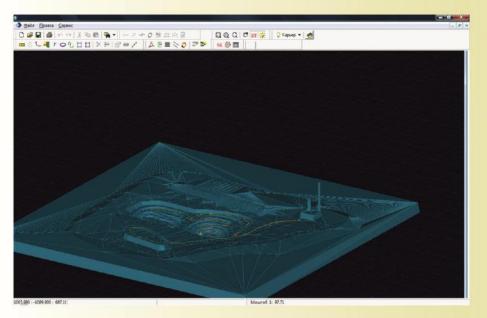
Локальная система дифференциальной коррекции и лазерной дальнометрии является инновационным продуктом для применения в геодезических и картографических работах и остро необходима для геодезических компаний или геодезических служб строительных организаций. В данном продукте учтены насущные потребности пользователей с учетом использования ими по отдельности систем спутниковой навигации и систем лазерной дальнометрии.

Объединение этих двух технологий позволит резко улучшить производительность геодезических работ и удобство использования данного приборного комплекса и определяет конкурентное преимущество перед другими продуктами. На данный момент на рынке Казахстана и в странах ближнего зарубежья такого комплекса не имеется.

Функциональное назначение:

Выработка навигационной корректирующей информации к стандартным сигналам GPS/ГЛОНАСС и ее распространение на локальной территории для обеспечения высокоточных навигационных определений с точностями в режиме движения 10-15 см и в режиме постобработки 2-5 см.

Область применения:

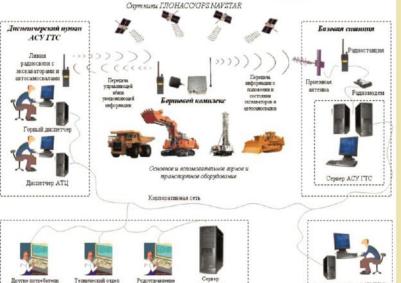

Геодезические, топографические и маркшейдерские работы.

Проведены проектные работы и изготовлено 2 опытноэкспериментальных образца. Проводятся полевые испытания.

Получен патент Республики Казахстан.

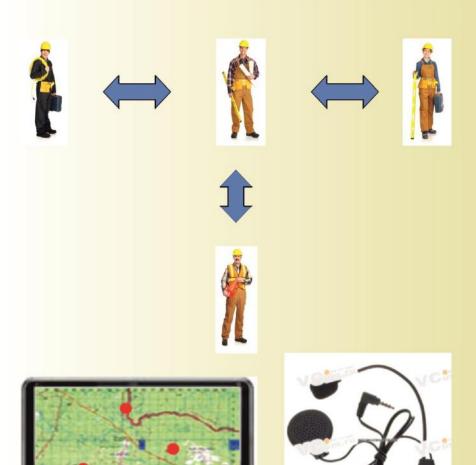
СИСТЕМА АВТОМАТИЗАЦИИ МАРКШЕЙДЕРСКИХ РАБОТ

Функциональное назначение:


Маркшейдерское обслуживание открытых горных работ является важной составной частью системы обеспечения качества добытого полезного ископаемого, которое включает производство инструментальных съемок и расчетов при ведении буровзрывных, экскаваторных, транспортных и дренажных работ, составление геологомаркшейдерских планов и документов, планов горных работ карьера, а также другие мероприятия по обеспечению и контролю требуемого качества добытого полезного ископаемого и учета добычи полезных ископаемых и движения их запасов.

Система автоматизации маркшейдерских работ предназначена для автоматизации маркшейдерских работ, создания и ведения баз данных маркшейдерских замеров на горных предприятиях с открытым способом отработки месторождений полезных ископаемых, автоматической корректировки маркшейдерских планов горных работ.

АВТОМАТИЗИРОВАННАЯ СИСТЕМА ДИСПЕТЧЕРИЗАЦИИ ГОРНОТРАНСПОРТНЫХ РАБОТ


Функциональное назначение

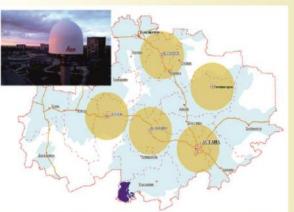
Автоматизация процесса мониторинга и управления работой горного оборудования (экскаваторы, бульдозеры, погрузчики) и транспортных средств (карьерные автосамосвалы, думпкары, конвейерные линии) при открытых разработках месторождений полезных ископаемых на основе использования спутниковых навигационных технологий.

Данная система позволяет не только автоматизировать процессы мониторинга и управления, но также автоматически формировать отчетные материалы по каждой единице горного и транспортного оборудования, сохранять их в таблицах баз данных, организовывать доступ к информации подразделений горного предприятия.

Производимая продукция будет полностью соответствовать техническим регламентам в области создания автоматизированных систем. Основным преимуществом перед конкурентами является возможность комплексирования разрабатываемой системы с имеющимися автоматизированными системами маркшейдерских работ, системами персональной навигации и связи, системами автоматизации буровзрывных работ, возможность налаживания интерфейсов с системой бухгалтерского учета «1С Бухгалтерия» и автоматизированными ERP-системами типа «Галактика», SAP R3 и другими MES и ERP системами.

СИСТЕМА ПЕРСОНАЛЬНОЙ НАВИГАЦИИ И СВЯЗИ

Функциональное назначение


Персональное использование работниками карьеров, организация голосовой связи с диспетчерскими пунктами и передача им в автоматическом режиме координат своего местоположения.

Данный проект позволяет существенно поднять уровень безопасности нахождения человека в карьерном пространстве и позволяет существенно поднять уровень информатизации всего горного производства. Производимая продукция будет полностью соответствовать техническим регламентам и ГОСТ в области создания автоматизированных систем.

Основным преимуществом перед конкурентами является возможность комплексирования разрабатываемой системы с имеющимися автоматизированными системами маркшейдерских работ, автоматизированными системами диспетчеризации горнотранспортных работ, системами автоматизации буровзрывных работ, системами оповещения о чрезвычайных ситуациях на горных предприятиях.

ДИФФЕРЕНЦИАЛЬНАЯ СТАНЦИЯ ДЛЯ СВСН РК

Функциональное назначение

Выработка навигационной корректирующей информации к стандартным сигналам GPS/ГЛОНАСС и ее распространение для обеспечения высокоточных навигационных определений с точностями в режиме движения 5-7 см и в режиме статики 2-5 мм.

Основные технические характеристики

- количество каналов приема навигационных сигналов ГНСС GPS/ГЛОНАСС/Galileo: не менее 72;
 - зона действия СДК: 50-70 км;
 - погрешность определения координат по коду: не более 0,75 м + 0,003 м/км;
 - погрешность определения координат по фазе: не более 30 мм + 3 мм/км;
 - диапазон температур окружающей среды:
 - -вариант A (вне помещения) минус 50°C до плюс 50°C;
 - -вариант Б (в помещении) плюс 5°C до плюс 45°C.


Область применения

Система высокоточной спутниковой навигации Республики Казахстан, геодезические, топографические и маркшейдерские работы.

Получен стандарт предприятия СТ 101434-1910-ТОО-01-2012 на выпуск станций дифференциальной коррекции и специального программного обеспечения.

По заказу АО "Национальная компания "Қазакстан Ғарыш Сапары" проведены ОКР и изготовлены 52 базовые станции дифференциальной коррекции для СВСН РК.

МОБИЛЬНЫЕ ПРИЕМНИКИ СВСН РК

Функциональное назначение

Мобильные приемники СВСН РК предназначены для непосредственного применения пользователями услуг системы высокоточной спутниковой навигации по высокоточному определению положения различных объектов на основе получения корректирующей информации с базовых станций дифференциальной коррекции СВСН РК.

Технические характеристики

Расчет навигационных решений в реальном времени с использованием дифференциальной коррекции, СКО не более:

- статика, в плане: 3 мм + 1 мм/км;
- •статика, по высоте: 6 мм + 1 мм/км;
- •кинематика, в плане: 10 мм + 1 мм/ки;
- •кинематика, по высоте: 20 мм + 1 мм/км.

Интерфейсы роверов:

- •интерфейс беспроводной связи Bluetooth для связи приемника ГНСС и контроллера;
- •интерфейс проводной связи Rs232 для подключения внешнего компьютера;
- •интерфейсы(соединители) для подключения антенн GSM и УКВ:
- •интерфейс (соединитель) для подключения кабеля электропитания Ровера от внешнего источника постоянного тока.

УНИФИЦИРОВАННАЯ СИСТЕМА ПЕРЕДАЧИ ДАННЫХ

на базе мобильной космической связи и спутниковой навигации

Функциональное назначение

Сбор, предварительная обработка и передача данных из любой точки Казахстана с применением систем подвижной спутниковой связи.

Основные технические характеристики

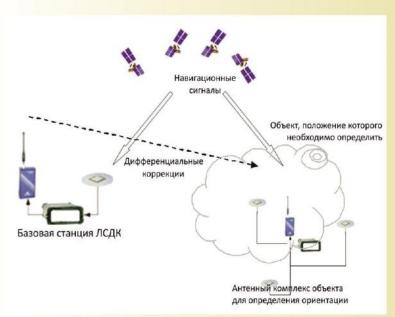
- используемые системы связи: GSM, Orbcomm, Globalstar, Inmarsat, Iridium;
- адаптивная схема электропитания, увеличивающая время работы от аккумулятора;
- возможность электропитания от бортовой сети транспортного средства;
 - устойчивость к внешним воздействиям IP65;
- поддержка подключения 4 аналоговых датчиков, 3 цифровых датчиков, 6 реле;
- возможность удаленной настройки режима работы и смены настроек терминалов;
- поддержка установления голосового соединения с терминалами;
 - полная совместимость и поддержка терминалов ЭВАК;
- возможность работы с любыми векторными и/или растровыми картами;
- защищенное хранение данных и безопасная авторизация пользователей.

Область применения

Контроль удаленных объектов, мониторинг транспорта и груза, контроль опасных грузов и спецтехники, экологический мониторинг, контроль уровня воды в водоеме, сбор и передача гидрометеорологических и сейсмологических данных.

СИСТЕМА ПЕРЕДАЧИ ДАННЫХ С КОГЕРЕНТНЫМ НАКОПЛЕНИЕМ СИГНАЛА

Функциональное назначение:


Система передачи данных с когерентным накоплением сигналов предназначена для организации систем связи с удаленными объектами через спутниковые каналы связи. Отличительной способностью системы является передача сигналов с уровнем сигнала ниже уровня шумов. Это позволяет при необходимости организовать скрытные каналы передачи данных для различных потребностей и служб. Кроме того, для использования данного вида связи не требуется специального выделения частот.

Системы когерентной связи, активно разрабатываемые в мире в последние годы, позволяют обеспечить устойчивую передачу данных между абонентами на больших расстояниях. Станции когерентной связи используют для передачи фазоманипулированных сигналов малой мощности, позволяющих обеспечивать выделение их на фоне шумов с помощью специальных алгоритмов обработки.

Предлагаемая система должна будет обеспечивать энергетический выигрыш в соотношении сигнал/шум после цифровой обработки около 20 дБ. Это означает, что если при традиционной связи необходимо обеспечить мощность сигнала на выходе передатчика 100 Вт, то при когерентной связи достаточно мощности передатчика в 1Вт.

Эти цифры соответствуют случаю, когда средняя скорость передачи информации составляет около 30 бод. Соответственно, при снижении скорости передачи можно будет достигнуть большего энергетического выигрыша.

СИСТЕМА ВЫСОКОТОЧНОЙ ПРОСТРАНСТВЕННОЙ ОРИЕНТАЦИИ ОБЪЕКТОВ

Функциональное назначение: автоматизированный сбор, обработка, хранение, передача и визуализация информации о пространственном положении и ориентации различных объектов.

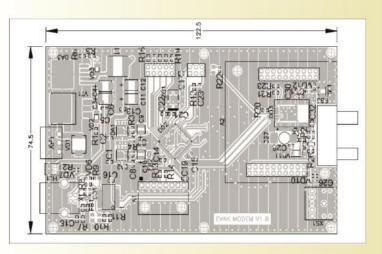
Основные технические характеристики:

Точность определения пространственной ориентации - 2-3 угл.мин.;

Аппаратурная погрешность (при доверительной вероятности 0,997) измерений псевдодальности в каждом диапазоне не превышает:

- 0,5 м по фазе кода;
- 0,007 м по фазе несущей;

Погрешности формирования локальной КИ не превышают (по уровню вероятности 0.997):


- 0,05 м по фазе кода;
- 0,005 м по фазе несущей.

Основные потребители:

Министерство обороны Республики Казахстан, нефтедобывающие компании, аэрокосмические компании.

СИСТЕМА ЭКСТРЕННОГО ВЫЗОВА ПРИ АВАРИЯХ И КАТАСТРОФАХ "ЭВАК"

Функциональное назначение

Оповещение экстренных служб и автоматическое установление связи между диспетчерским пунктом и водителем и пассажирами транспортного средства. Базовая услуга заключается в передаче службам экстренного реагирования информации в автоматическом или ручном режиме о дорожнотранспортном происшествии, чрезвычайной ситуации или угрозе жизни и здоровью, также мониторинг оказания помощи.

Основные технические характеристики

- •точность позиционирования: 12-15 м;
- •время холодного старта навигационного модуля: 23 сек;
- •используемые навигационные системы: GPS, ГЛОНАСС;
- •каналы передачи данных: GPRS/EDGE, DTMF, SMS;
- •измерение величины удара по трем осям: ±25g;
- •максимальное время задержки от нажатия кнопки SOS до вызова оператора: 10 сек;
 - •наличие переговорного устройства;
 - •интервал отправки координат и показаний датчиков: 5 сек;
 - напряжение питания: 12-24 В;
 - защита от переполюсовки питания;
 - •рабочая температура: -40 +70°C.

Область применения

Спасательные, охранно-поисковые, навигационные, телематические (связанные с мониторингом и эксплуатацией транспортных средств) работы.

СИСТЕМА ПОДАВЛЕНИЯ СИГНАЛОВ ГЛОБАЛЬНЫХ НАВИГАЦИОННЫХ СПУТНИКОВЫХ СИСТЕМ GPS/ГЛОНАСС (ВОЕННОЕ ПРИЛОЖЕНИЕ)

Функциональное назначение

Подавление навигационных сигналов ГНСС GPS/ГЛОНАСС на больших территориях путем постановки активных радиопомех, нарушающих работу навигационных приемников условного противника (высокоточное оружие, авиация, транспорт, морские суда и др.)

Основные технические характеристики

- частотный диапазон L1 1575,42 МГц, L2 -1227,60 МГц;
- дальность действия до 300 км;
- мощность излучения от 20 до 100 Вт;
- вероятность безотказной работы 0,998;
- управление с командного пункта или автономный режим работы;
- передача данных на диспетчерский центр.

Основные потребители

Вооруженные Силы Республики Казахстан.

Организация радиоэлектронной борьбы с навигационными системами условного противника.

ИМПУЛЬСНО-ФАЗОВАЯ РАДИОНАВИГАЦИОННАЯ СИСТЕМА (ИФРНС) НАВИГАЦИОННОЕ ОБОРУДОВАНИЕ ПОТРЕБИТЕЛЯ (ВОЕННОЕ ПРИЛОЖЕНИЕ)

Функциональное назначение

Местоопределение подвижных объектов всех групп потребителей в отсутствие навигационных сигналов ГНСС с точностью, достаточной для решения навигационных задач авиации, водного транспорта, наземных мобильных средств.

Основные технические характеристики:

- 1. Дальность действия системы:
- при формировании радионавигационного поля ИФРНС до 1000 км от ведущей станции;
- при формировании региональных дифференциальных поправок (ДП) ГНСС до 500 км от НПС;
 - при формировании локальных ДП ГНСС 30-50 км от КП-ЛККС;
 - при формировании ДП ИФРНС до 100 км от КП-ЛККС.
- 2. Средняя квадратическая погрешность определения координат потребителями, оборудованными интегрированной или комплексированной радионавигационной аппаратуройГНСС/ИФРНС:
- по сигналам ГНСС в дифференциальном режиме не более 5 м;
 - по сигналам ИФРНС 150-600 м;
- по сигналам ИФРНС в дифференциальном режиме не более 50 м.

Основной потребитель

Вооруженные силы Министерства Обороны Республики Казахстан.

МОБИЛЬНЫЙ НАВИГАЦИОННО-ТОПОГРАФИЧЕСКИЙ КОМПЛЕКС ВОЕННОГО НАЗНАЧЕНИЯ НА БАЗЕ АВТОМОБИЛЯ ВЫСОКОЙ ПРОХОДИМОСТИ

Функциональное назначение

Оперативное решение задач по топогеодезическому обеспечению районов боевого применения войск, топогеодезической привязке элементов боевых порядков войск, ведению топографической разведки.

Основные тактико-технические характеристики

Погрешность определения высоты изделием (СКО) - 2м. Погрешность определения координат изделием (СКО) на стоянке и при перемещении со скоростью не более 80 км/ч:

- по данным интегрированной спутниковой навигационной аппаратуры не более 2м;
- по данным инерциальной навигационной аппаратуры 0,25% от пути;
 - -по данным СНС не более 2 м.

Погрешность (СКО) определения истинного курса изделия - не более 0,1⁰.

Погрешность (СКО) определения истинного курса изделия или дирекционного угла в режиме хранения азимута на стоянке и при перемещении со скоростью не более 80 км/ч - не более 0,10.

Основной потребитель

Министерство обороны Республики Казахстан

СИСТЕМА ЭЛЕКТРОННОГО МОНИТОРИНГА КУИС ЭЛЕКТРОННЫЙ БРАСЛЕТ СЛЕЖЕНИЯ

Состав системы

- •Средства удаленного мониторинга;
- •Геоинформационная система;
- •Система хранения и обработки информации;
- •Компонент ведения и предоставления справочной информации;
- •Компонент обеспечения отказоустойчивости (резервирование);
- •Антивирусное программное обеспечение;
- •Лицензируемое программное обеспечение.

Основные технические характеристики

- •протокол передачи данных в центр GPRS/GSM/Телеф.линия;
- •шифрование данных;
- •радиус охвата (связь браслет-модуль) до 100 м;
- •возможность программного изменения радиуса охвата;
- •возможность удаленного обновления прошивки модуля;
- •используемая радиочастота 433 МГц;
- •срок работы батареи до3 лет;
- •максимальное погружение в воду до 5 м;
- •степень защиты корпуса (IP) Ip56

Основные функции

- •определение факта нарушения осужденным режима пребывания по месту жительства;
- •определение факта нарушения осужденным обязанностей, возложенных на него судом, по непосещению определенных мест или выезда в другую местность без разрешения специализированного органа;
- •определение факта нарушения осужденным обязанностей, возложенных на него судом, по неупотреблению алкоголя (как дополнительная мера контроля).

Благодарим за внимание!